CARACTERIZAÇÃO DE NANOPARTÍCULAS

Parte 4 – Análise das imagens obtidas por microscopia eletrônica de transmissão.

NOTA TÉCNICA

Maio 2020

Página 2/8

PROCEDIMENTO OPERACIONAL PARA A ANÁLISE DAS IMAGENS OBTIDAS POR MICROSCOPIA ELETRÔNICA DE TRANSMISSÃO.

SUMÁRIO

- 1 Objetivo
- 2 Campo de aplicação
- 3 Responsabilidade
- 4 Documentos de referência
- 5 Definições
- 6 Recomendações gerais
- 7 Preparação das imagens
- 8 Estabelecimento do marco de medição
- 9 Seleção dos mensurandos
- 10 Tratamento das partículas em contato ou superpostas
- 11 Processamento das imagens
- 12 Referências bibliográficas
- 13 Quadro de aprovação

1 OBJETIVO

Este documento tem como objetivo principal apresentar ao profissional da área de microscopia eletrônica procedimentos para a implementação e interpretação adequadas da análise quantitativa do tamanho de nanopartículas, utilizando técnicas de microscopia eletrônica combinadas com análise de imagem. Foi desenvolvido e aprimorado ao longo de diversas comparações intra e interlaboratoriais sobre a caracterização dimensional, morfológica e estrutural de nanomateriais [1-4] realizadas por pesquisadores da Divisão de Metrologia de Materiais (Dimat) do Inmetro. Cabe destacar que o presente documento não possui caráter compulsório ou taxativo, apenas serve como um guia para a aquisição de imagens por microscopia eletrônica de transmissão.

2 CAMPO DE APLICAÇÃO

O procedimento apresentado neste documento aplica-se para analisar as imagens adquiridas utilizando um microscópio eletrônico de transmissão, mas serve também para imagens adquiridas usando um microscópio eletrônico de varredura.

3 RESPONSABILIDADE

A responsabilidade pela emissão, revisão e cancelamento do presente documento é da Dimat.

Página 3/8

4 DOCUMENTOS DE REFERÊNCIA

Este documento foi redigido usando como base os seguintes documentos:

Nota Técnica Inmetro - 2017	Análise dimensional de nanomateriais utilizando microscopia eletrônica. 2017		
NANoREG D2.10	Mast, PJ. De Temmerman. Deliverable D 2.10 <i>Protocol(s)</i> for size-distribution analysis of primary NM particles in air, powders, and liquids. CODA-CERVA Veterinary and agrochemical research center. Documento público sob Creative Commons Attribution – Non-Commercial – Share Alike 4.0 International License. 2016.		

5 DEFINIÇÕES

5.1 Siglas

NM	nanomaterial
NP	nanopartícula
MET	microscópio/microscopia eletrônica de transmissão
MEV	microscópio/microscopia eletrônica de varredura
MR	Material de referência
MRC	Material de referência certificado
ECD	Equivalent circular diameter (diâmetro circular equivalente)
MICD	Maximal inscribed circular diameter (diâm. do máximo círculo inscrito)

5.2 Termos

- Nano-objeto: material com uma, duas ou três dimensões externas dentro da nanoscala. Definição baseada na ISO/TS 80004-2 [5].
- Nanopartícula: nano-objeto com as três dimensões externas dentro na nanoescala.
- Nanomaterial: material natural, incidental ou manufaturado que contem partículas livres ou agregadas ou aglomeradas e donde, para 50% ou mais da distribuição numérica de tamanho, uma ou mais dimensões externas está na nanoscala.
 - Nota Esta definição está baseada nas recomendações da União Europeia no estabelecimento do marco regulatório para o uso de nanomateriais em produtos de consumo [6]. A importância desta definição é que a mesma determina que além de medir, devem-se contar os nano-objetos.
- Nanoscala ou escala nanométrica: escala que vai de aproximadamente 1 nm a 100 nm.
- Partícula primária: partícula individual e fonte original de agregados ou aglomerados [5].

Página 4/8

- Agregado: partículas fortemente ligadas ou fundidas para as quais a área superficial externa é significativamente menor que a soma das áreas dos componentes individuais [5].
- Aglomerado: grupos de partículas ou agregados, ou mistura de ambos, unidos por ligações fracas, para os quais a área superficial externa é similar à soma das áreas superficiais dos componentes individuais [5].
- Marco de medição: área selecionada dentro da imagem em que as partículas são medidas e contadas [7].
- Tamanho do pixel: é o tamanho de um pixel na imagem digitalizada de microscopia eletrônica. É expresso em nm/pixel a menos que outra unidade seja indicada.
- Tamanho da partícula: dimensão linear de uma partícula determinada por um método específico de medição e sob condições específicas de medição [8].
- Threshold: (limiarização): é um processo de segmentação de imagens que se baseia na diferença dos níveis de cor que compõem diferentes objetos de uma imagem. A partir de um limiar estabelecido de acordo com as características dos objetos que se quer isolar, a imagem pode ser segmentada e/ou binarizada em preto e branco.
- Binarização: é a conversão de uma imagem com níveis de cinza para uma imagem com representação binária (preto e branco).

6 RECOMENDAÇÕES GERAIS

Devido ao grande número de partículas a serem analisadas, é recomendado o uso de um software de análise de imagens. Quanto mais automatizado for o procedimento, menor será a influência do operador sobre o mesmo. Nossa experiência é utilizando o software *ImageJ* ([http://imagej.net/] ou o pacote *Fiji* [http://fiji.sc/] que inclui o *ImageJ*) que é um software aberto e gratuito. Mas qualquer outro software que permita uma análise da imagem fornecendo informações sobre o tamanho e forma do NM pode ser usado.

A principal função do processamento digital é fornecer ferramentas para facilitar a identificação e a extração das informações contidas nas imagens, para posterior interpretação. O resultado desse processamento é a produção de outras imagens, com informações específicas, extraídas e realçadas a partir das imagens originais. Nesse sentido, para obter informações sobre as NP presentes na imagem, deve-se distingui-las do fundo (*background*). Imagens com muito ruído, bordas das partículas pouco definidas ou fundo não homogêneo, requerem um processamento maior com uso de filtros, que podem comprometer a veracidade dos resultados. Por isso é recomendado um especial cuidado durante a aquisição das imagens (ver protocolo [9]), para que estas apresentem fundo de intensidade uniforme e bom contraste com as NP. É importante também que todas as imagens a serem analisadas tenham sido adquiridas sob as mesmas condições de operação.

Página 5/8

7 PREPARAÇÃO DAS IMAGENS

As imagens adquiridas nas mesmas condições de iluminação podem ser agrupadas formando pilhas (*stacks*) para se trabalhar com todas as imagens juntas. Assim, o processamento realizado numa das imagens pode ser aplicado a todas as outras, otimizando-se o tempo de trabalho.

7.1 Preparação prévia

Algumas imagens precisarão de uma preparação prévia caso apresentem um fundo não homogêneo, pouco contraste ou bordas pouco definidas.

- Remover o background caso exista algum gradiente devido a uma iluminação heterogênea (isso deve ser evitado alinhando corretamente o microscópio e alargando o feixe).
- Corrigir a escala de cinza para maximizar o contraste.
- Caso seja necessário, aplicar um filtro gaussiano ou outro filtro apropriado para definir a borda das NP.

7.2 Binarização

O procedimento consiste em transformar uma imagem em escala de cinza para uma imagem binária, com partículas discretas e destacadas do fundo, a fim de determinar a distribuição de tamanho das partículas primárias.

- Aplicar o threshold, separando as nanopartículas do fundo.
- Binarizar a imagem e salvá-la na base de dados.

8 ESTABELECIMENTO DO MARCO DE MEDIÇÃO

Se todos os objetos que aparecem na imagem forem aceitos para a medição, a exatidão da distribuição final será prejudicada, pois alguns desses objetos estarão cortados pela borda da micrografia. Para prevenir isso, um marco de medição deve ser incluído (ISO 13322-1 [7]). O marco de medição pode ser definido das duas maneiras descritas abaixo.

8.1 NP excluídas de acordo com o marco de medição.

- As bordas superior e esquerda do marco são estabelecidas a partir de 10% das bordas superior e esquerda originais da micrografia. As bordas inferior e direita permanecem as mesmas.
- As partículas dentro do marco são incluídas na análise.
- As partículas que estão dentro da faixa dos 10%, mas tocando no novo marco, são incluídas.
- As partículas tocando a borda inferior ou direita são excluídas da análise.

Página 6/8

8.2 NP excluídas de acordo com suas coordenadas X-Y do centro de massa.

- As coordenadas X-Y do centro de massa de cada partícula são determinadas.
- Partículas cujas coordenadas X-Y estão distantes em até 5% do tamanho da micrografia, de qualquer uma de suas bordas, são excluídas da análise

9 SELEÇÃO DOS MENSURANDOS

Distribuições de tamanhos requerem um único mensurando, enquanto que distribuições de forma requerem dois mensurandos. Algum deles são descritos a seguir.

Nota – Recomenda-se salvar os valores de todos os mensurandos que o software pode calcular. Assim, o operador fica com uma base de dados de resultados completa da amostra, visto que análises posteriores não poderão ser realizadas para complementar uma base de dados já existente.

9.1 Descritores de tamanho

- Diâmetro circular equivalente ECD (x_A ou d_{ECD}): diâmetro de um círculo que tem a mesma área que a área projetada da partícula.
- Diâmetro de Feret (x_F ou d_F): distância entre duas linhas paralelas tangentes ao perímetro da partícula.
- Diâmetro do máximo círculo inscrito MICD: diâmetro do maior círculo de tamanho suficiente para caber dentro da forma da área projetada da partícula.
- Fecho ou envoltório convexo (convex hull): é a menor região convexa contendo um dado objeto geométrico

Nota – Na seleção do mensurando para distribuições de tamanho, é importante levar em consideração qual é o mensurando certificado no MRC utilizado para comparação.

9.2 Descritores de forma

- Relação de aspecto (aspect ratio, AR) [10]: razão entre o diâmetro mínimo e máximo de Feret. Indica quão alongada é a partícula.
- Fator de forma (*shape factor*) [7]: razão entre o diâmetro máximo e mínimo de Feret. Indica quão alongada é a partícula. É a inversa da relação de aspecto.
- Convexidade: é a relação entre o perímetro do fecho convexo que envolve a área projetada da partícula e o perímetro da mesma. Fornece informações sobre a rugosidade da borda da área projetada da partícula.
- Circularidade: é a razão entre a área e o quadrado do perímetro. Indica o quanto a área projetada da partícula é similar ao círculo, considerando a rugosidade/suavidade do perímetro e a área projetada da partícula.
- Solidez (solidity): é a relação entre a área projetada e a área do fecho convexo. Indica quão compacta é a imagem da partícula.

Página 7/8

Arredondamento (roundness): é o quadrado da circularidade

10 TRATAMENTO DAS PARTÍCULAS EM CONTATO OU SUPERPOSTAS

Ainda havendo minimizado a aglomeração do NM durante o preparo das amostras, é comum encontrar partículas em contato ou superpostas nas imagens em análise. Quando a análise da imagem é realizada automaticamente, artefatos como produtos químicos secos ou partículas em contato são erroneamente incluídos como objetos identificados. A remoção dos mesmos pode ser realizada de forma manual ou automática. O descarte automático é baseado em critérios geométricos, estabelecendo-se limites em parâmetros como a circularidade, fator de forma, área, etc. [11]. Recomenda-se que seja verificado que tais limites não alterem significativamente a distribuição de tamanho.

Em termos gerais não é recomendada a utilização de ferramentas para separação de objetos como o algoritmo "divisor de águas" (*watershed*), pois essa utilização costuma levar a subestimação do tamanho e mudar o resultado da avaliação da forma das partículas.

11 PROCESSAMENTO DAS IMAGENS

11.1 Análise das NP

- Realizar o thresholding selecionando as partículas de interesse.
- A área da menor partícula considerada nos cálculos deve ser de 100 pixels (ver a escolha da magnificação na referência [9]).
- Excluir as partículas seguindo algum dos marcos de medição (seção 8).
- Permitir que o programa usado identifique as partículas detectadas nas imagens com um número, e que este esteja relacionado com a base de dados gerada.
- Não usar a função fill holes nem incluir os buracos nas análises.
- Para análises de NP aproximadamente esféricas, descartar os agregados e aglomerados (seção 10). Não usar a função *watershed*.
- Salvar as medições numa planilha.
- Registrar todos os passos seguidos e métodos selecionados num relatório.

11.2 Planilha de dados

Gerar uma planilha de dados que contenha como mínimo:

- Valores dos mensurandos medidos de cada partícula analisada.
- Nome da imagem à qual pertence cada partícula.
- Número da partícula (o mesmo que a identifica nas imagens).
- Coordenadas X-Y do centro da área projetada da partícula.

Página 8/8

12 REFERÊNCIAS BIBLIOGRÁFICAS

- [1] NMIJ-PTB: Bilateral comparison on nanometrology according to the rules of CCL key comparisons; APEC ISTWG Project Interlaboratory Comparison on Nanoparticle Size Characterization, 2012
- [2] Projeto NanoValid, Developing Reference Methods for Nanomaterials, 2012-2015
- [3] NANoREG, A common European approach to the regulatory testing on nanomateriais, 2014-2017. Protocolos disponíveis em: http://www.nanoreg.eu/
- [4] C.P.Gouvêia, S.M.Landi, C.E.Galhardo, J.C. Damasceno. Nota técnica Inmetro: Análise dimensional de nanomateriais utilizando microscopia eletrônica, em http://www.inmetro.gov.br/metcientifica/pdf/Analise_dimensional_de_nanomater iais_utilizando_microscopia_eletronica_-_Nota_Tecnica.pdf
- [5] ISO/TS 80004-2:2015. *Nanotechnologies Vocabulary Part 2: Nano-objects*. 2015, ISO: Geneva, Switzerland.
- [6] L 275/38 Official Journal of the European Union 20.10.2011
- [7] ISO 13322-1:2014. Particle size analysis Image analysis methods Part 1: Static image analysis methods. 2014, ISO: Geneva, Switzerland.
- [8] ISO/TS 80004-6:2013. Nanotechnologies Vocabulary Part 6: Nano-objects characterization. 2013, ISO: Geneva, Switzerland.
- [9] CARACTERIZAÇÃO DE NANOPARTÍCULAS. Parte 3 Aquisição de imagens utilizando microscopia eletrônica de transmissão. Maio de 2020.
- [10] ISO 9276-6:2008: Representation of results of particle size analysis Part 6: Descriptive and quantitative representation of particle shape and morphology. 2008, ISO: Geneva, Switzerland
- [11] E. Verleysen et al.: Quantitative characterization of aggregated and agglomerated titanium dioxide nanomaterials by transmission electron microscopy. Powder Technol. 258, p. 180–188, 2014 [DOI: 10.1016/j.powtec.2014.03.010]

13 QUADRO DE APROVAÇÃO

Elaborado por	Sandra Marcela Landi	Pesquisadora -Tecnologista
Aprovado por	Oleksii Kuznetsov	Chefe da Dimat